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We study the conductance of an interconnect between two graphene leads formed by a single-atom carbon
chain. Its dependence on the chemical potential and the number of atoms in the chain is qualitatively different
from that in the case of normal-metal leads. Electron transport proceeds via narrow resonant states in the wire.
The latter arise due to strong reflection at the junctions between the chain and the leads, which is caused by the
small density of states in the leads at low energy. The energy dependence of the transmission coefficient near
resonance is asymmetric and acquires a universal form at small energies. We find that in the case of leads with
the zigzag edges the dispersion of the edge states has a significant effect on the device conductance.
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I. INTRODUCTION

The efforts to miniaturize electronic devices have long
motivated studies of electron transport in molecular and
atomic-scale devices. Creating reliable electrical contacts
with the molecule presents a major challenge in molecular
electronics. Until recently, in molecular electronic devices
the molecule was typically attached between two normal
metal, such as gold, electrodes.1–6

Carbon-based conductors have long been expected to be
promising components of electronic devices.7 Apart from
bulk graphite there are also quasi-one-dimensional �carbon
nanotubes8� and two-dimensional �graphene9� forms, which
have remarkable mechanical and electrical properties and
form strong chemical bonds with each other. This offers the
prospect of building entire electronic devices or circuits out
of carbon-based materials.

Single-atom carbon chains �SACCs� are natural compo-
nents of such devices. They are expected to be ideal one-
dimensional conductors.10 They covalently bond to other car-
bon materials. Formation of SACCs was conjectured to
occur between carbon nanotubes11–13 and in gaps between
two graphene leads.14 Formation of SACCs between
graphene electrodes fabricated by stretching a graphene strip
has been observed in Ref. 15. SACC interconnects between
graphene leads could form a basic unit for integration into
more complicated circuits in the future. Electron transport
through SACCs with graphene contacts has not been studied
theoretically. We address this issue in the present paper.

Electron transport in SACCs with metal leads has been
studied numerically.10,16–18 The conductance of an SACC
strongly coupled to metal electrodes is on order of the con-
ductance quantum and exhibits even-odd oscillations with
the number of atoms in the chain with the contrast ratio of
order unity.

In this paper we show that electron transport through an
SACC interconnect between graphene leads in the noninter-
acting electron approximation is described by an analytically
solvable model. This enables us to gain physical insight into
the essential features of electron transport. This model can
also serve as the starting point for treating one-dimensional
electron correlations in SACC and their influence on trans-
port.

The conductance of the system is qualitatively different
from that in the case of metal leads. For all electron energies
corresponding to practically relevant temperatures and dop-
ing levels the junction between the chain and the graphene
lead is almost perfectly reflecting even at strong coupling
between the chain and the lead. The transmission coefficient
of the contact vanishes linearly with electron energy as the
latter approaches the Fermi energy of undoped graphene.
This suppression of transmission results from the vanishing
of density of states �DoS� in graphene at zero doping. As a
result electron transport through the interconnect proceeds
via narrow resonant states in the chain that arise due to
strong reflection at the junctions. The width and the position
of the resonances depend on the length of the interconnect
and the details of its coupling to the leads. The shape of
low-energy resonances is universal but markedly different
from the Breit-Wigner form. It is dictated by the linear-
energy dependence of the DoS in graphene at the point of
contact with the chain. This holds even in the case of leads
with zigzag edges, which support edge states.19,20 Although
edge states have a linear dispersion at low energies, their
wave functions extend into the bulk to distances inversely
proportional to the energy and give a linear in energy contri-
bution to DoS at the contact point.

Due to the resonant character of transmission the device
conductance is very sensitive to the number of atoms in the
chain. In the case of graphene leads the conductance differ-
ence between chains with odd and even number of atoms in
the SACC �which was first noted10 in the case of metal leads�
becomes much more pronounced and may appear as the dif-
ference between the on- and off-state conductance.

The high stability of SACC interconnects makes them
promising building block of atomic-scale electronics of the
future. The resonant character of electron transport through
them suggests that they can be used as components of
atomic-scale transistors. Our work is an initial step toward
theoretical understanding of electron transport in SACC in-
terconnects between graphene leads.

The paper is organized as follows. In Sec. II we qualita-
tively discuss the essential features of electron transport in
SACC interconnects between graphene leads. In Sec. III we
formulate an analytically solvable model of electron dynam-
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ics in the system. In Sec. III A we derive a general formula
for the reflection amplitude of the junction between the chain
and the lead in terms of the electron Green’s function �GF� of
the lead. In Sec. III B we evaluate the GF and study the
tunneling density of states at the junction due to the bulk and
edge electron states in the lead. In Sec. IV we evaluate the
transmission coefficient of the device and obtain the univer-
sal formula for the resonance shape. We discuss our results
and experimental implications in Sec. V.

II. QUALITATIVE DISCUSSION

Linear molecules with degenerate electron states represent
an exception to the Jahn-Teller theorem on the instability of
the symmetric molecular configurations.21 In this case the
degenerate electron states have nonzero angular momenta
�� about the molecule axis. Thus the matrix element cou-
pling the two states and the corresponding energy gain arises
only in second or higher order in the vector displacements of
the nuclei from the symmetry axis. In the linear SACC the
two degenerate electron bands have angular momenta �1
about the molecular axis and their coupling arises only in
second order in the nuclear displacements. In the Peierls
channel, which at zero doping corresponds to dimerization,
the coupling between right and left movers is linear in the
displacements. Thus the two most likely candidates for the
SACC structure are the linear chain of equidistant double
bonded carbon atoms, known as cumulene �¯C=C=C
=C¯�, and the Peierls-distorted dimerized chain, known as
polyyne �¯C−C�C−C¯�. This expectation is confirmed
by numerical studies. Ab initio calculations17 show that be-
cause of large quantum fluctuations of the atomic positions,
among all possible spatial arrangements of the carbon atoms
in the chain only the cumulene structure is stable. The outer-
shell electron orbitals in cumulene are sp hybridized. The
two sp-hybridized orbitals form the fully occupied � band.
The two remaining py and pz orbitals form two doubly de-
generate � bands, which are half filled making undoped cu-
mulene a one-dimensional conductor. Numerical studies22

also show that cumulene remains metallic under doping.
If the SACC attached to the graphene leads is not too long

the main features of electron transport through it can be un-
derstood within the single-electron picture without account-
ing for electron-electron correlations. As the conduction �
band in graphene leads is formed by the pz orbitals, whose
wave functions are antisymmetric with respect to reflections
in the graphene plane, only the electrons from the �z band in
SACC can propagate into the leads. Thus electron transport
is mediated by a single spin-degenerate conducting band in
the chain.

Because of the long mean-free path of electrons in
graphene,9 electron motion in the leads may be assumed to
be ballistic. The device conductance is then determined by
the elastic electron scattering at the junctions between the
molecular wire and the leads and backscattering in the chain.
Backscattering in the SACC due to electron-phonon interac-
tion corresponds to emission or absorption of phonons with a
wavelength on order of the interatomic spacing and energy
on the order of 103 K. As a result such processes are expo-

nentially suppressed23,24 even at room temperature. Although
imperfections in the substrate and deviations of the atomic
positions from the ideal configuration cause some back-
scattering of electrons in the wire, we show below that the
strongest reflection of the electron wave in the chain occurs
at the contact with the graphene lead.

With the aid of the Fermi golden rule the transmission
coefficient of the contact can be estimated as Tc���c�2�w�g.
Here �c is the tunneling matrix element that couples the last
atom in the chain to the lead, �w is the local DoS at that
atom, and �g is the DoS at the graphene atom that is con-
nected to the chain. The local DoS in the chain is energy
independent and can be estimated as �w�1 /�w, where �w is
the nearest-neighbor hopping integral in the atomic wire. The
DoS in graphene, on the other hand is strongly energy de-
pendent and is on the order of �g��	� /�g

2, where �g is the
nearest-neighbor hopping integral in graphene and 	 is the
electron energy measured from the Fermi level of undoped
graphene.25 Thus the transmission coefficient of the contact
can be estimated as

Tc �
�c

2�	�
�w�g

2 . �1�

The hopping integrals in graphene and SACC are of the
same order of magnitude. Therefore at typical doping levels,
�	�
�g, the transmission coefficient is small even at strong
coupling between the chain and the lead, when all hopping
integrals between nearest-neighbor carbon atoms are of the
same order, �c��w��g.

Neglecting the weak backscattering in the wire we can
express the energy-dependent transmission coefficient of the
device, T�	�, in terms of the reflection amplitudes of the left
and right junctions between the wire and the leads, rl/r�	�
= �rl/r�	��exp�i�l/r�, as

T�	� =
�tl�	��2�tr�	��2

�1 − �rl�	���rr�	���2 + 2�rl�	���rr�	���1 − cos ��
. �2�

Here �tl/r�	��2=1− �rl/r�	��2 are the transmission coefficients of
the junctions and � is the phase accumulated by an electron
upon returning to the same point in the chain after being
reflected from both contacts. It can be expressed as �
=2kN+�l+�r, where N is the number of atoms in the chain,
k is the absolute value of the dimensionless �measured in
units of the inverse lattice spacing d of the chain� electron
quasimomentum, and �l/r are the phases of the reflection am-
plitudes of the contacts.

Because at low energies the junctions become strongly
reflective appreciable transmission through the device in this
regime occurs only near resonances, where the phase �
equals an integer multiple of 2�. The energy spacing be-
tween adjacent resonances is ��c /N.

To obtain a simplified expression for the transmission co-
efficient near a low-energy resonance we write the reflection
amplitudes of the junctions at low energies as �rl/r�	��=1
−cl/r�	� /�g, where cl/r is a numerical coefficient on the order
of unity. This expression follows from Eq. �1�. Linearizing
the energy dependence of the phase � near the resonance

CHEN, ANDREEV, AND BERTSCH PHYSICAL REVIEW B 80, 085410 �2009�

085410-2



energy 	0 and �=c��	−	0� /�g, where c��N is a numerical
coefficient, we can write the transmission coefficient of the
device as

T�	� = �T0
−1 + 
�1 −

	0

	
�2	−1

. �3�

Here T0= �cl+cr�2 / �4clcr� is the transmission coefficient at
the resonance and 
=c�

2 / �4clcr��N2. The width of the reso-
nance is on the order of 	0 /N. In the case of symmetric
contacts, cl=cr, the device becomes perfectly transmitting on
resonance. The shape of the resonance is shown in Fig. 1 It is
strongly asymmetric and markedly different from the Breit-
Wigner form which arises in the case of metal leads.

Since low-energy transmission through the device pro-
ceeds via a single resonant state in the chain it is clear that
Eq. �3� holds under very general conditions. The assumption
that the coupling �c between the chain and the lead is energy
independent is valid if the resonance energy is smaller than
the inverse propagation time of an electron across the junc-
tion. Such resonances always exist if the SACC is longer
than the junction �for example a small peninsular extending
between the graphene lead and the chain�. As long as the
backscattering in the chain does not lead to localization the
resonant state will remain coupled to both leads. The back-
scattering will merely modify its energy and strength of cou-
pling to the leads and can be accounted for by the change of
parameters in Eq. �3�. Similarly electron-electron interac-
tions in a finite chain will renormalize the energy and the
coupling of the resonant state with the leads.

In the remainder of the paper we present a quantitative
treatment of simple model of electron transport through a
cumulene SACC interconnect between graphene leads.

III. SYSTEM AND MODEL

Consider an ideal cumulene SACC connected to graphene
leads with perfect zigzag edges, as shown in Fig. 2 As a first
step in the theoretical analysis of the system, we assume that

the atoms in the SACC are in the ideal cumulene configura-
tion. We work in the noninteracting electron approximation
and describe the electron motion in the conducting �y and �z
bands using the nearest-neighbor tight-binding approxima-
tion. More complicated band structure of the carbon wire
will not significantly modify our conclusions.

Electron transport through the device is fully determined
by the reflection amplitude of the contact between the SACC
and the graphene lead. We derive in Sec. III A a general
formula for the reflection amplitude of the contact in terms
of the local DoS in the lead evaluated at the atom which is
connected to the SACC, Eq. �14�. This expression applies for
an arbitrary shape of the lead. Then in Sec. III B we special-
ize to the case of graphene leads with zigzag edge. The zig-
zag edge is likely to be formed as a result of an electric
failure14 or a tear of a graphene strip because it has the least
number of dangling bonds per unit length. We find that the
edge states present in the case of zigzag edge provide a sig-
nificant contribution to the tunneling DoS at the edge of the
lead and thus carry a significant portion of the current
through the device.

A. Reflection amplitude of the junction

Let us first consider a single junction between the SACC
and a graphene lead. We label the sites in the chain by an
integer n which enumerates the atoms starting from the junc-
tion, see Fig. 2. The reflection amplitude of the contact can
be found from the retarded Green’s function of the auxiliary
system evaluated between two points inside the semi-infinite
wire using the expression

G�n,n�� � exp
− ik�n − n��� + r�	�exp
− ik�n + n��� . �4�

Here k is the absolute value of the energy-dependent quasi-
momentum of the electron in the chain and the Green’s func-

tion is defined in terms of the system Hamiltonian Ĥ in the
standard way

G�n,n�� = �n�Ĝ�n�
 = �n��	+ − Ĥ�−1�n�
 , �5�

where 	+=	+ i0.
We write Hamiltonian of the system as
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FIG. 1. �Color online� Dependence of the transmission coeffi-
cient T in Eq. �30� on 	 /	0 �dashed line� with 
=50. The solid
curve is the Breit-Wigner resonance with the same resonance en-
ergy 	0 and width.
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FIG. 2. �Color online� Schematic picture of the device. The
atoms in the wire are labeled by n=1,2 , . . . ,. The unit vectors of the
graphene Bravais lattice, a1 and a2, are shown by blue arrows. Each
unit cell �dashed rhomboid� is labeled by �N1 ,N2�.

CONDUCTANCE OF A SINGLE-ATOM CARBON CHAIN… PHYSICAL REVIEW B 80, 085410 �2009�

085410-3



Ĥ = Ĥw + Ĥg + V̂ , �6�

where Ĥw and Ĥg are, respectively, the Hamiltonians of the

semi-infinite wire and the semi-infinite graphene lead, and V̂
is the perturbation, which describes electron tunneling be-
tween them.

Introducing the Green’s function of the unperturbed sys-

tem, Ĝ0= �	+− Ĥw− Ĥg�−1, we can express the Green’s func-
tion of the full system as

Ĝ = Ĝ0 + Ĝ0T̂Ĝ0, �7�

where T̂ is the T matrix of the junction between the chain and
the lead is given by

T̂ = �1 − V̂Ĝ0�−1V̂ . �8�

In the nearest-neighbor tight-binding model the tunneling

perturbation V̂ couples only the �n=1
 orbital in the chain
and a single contact site in the graphene lead, which we label
as �0
. In the 2�2 subspace spanned by these states the

tunneling perturbation V̂ can be written as

V̂ = �c�0 1

1 0
� , �9�

where �c is the hopping integral at the contact between the
chain and the graphene lead. In this case the T matrix de-
pends only on the unperturbed Green’s function within the
2�2 subspace, where it has the form

Ĝ0 = �Gg�0,0� 0

0 Gw�1,1� 	 . �10�

Here Gg�0 ,0� is the Green’s function of the graphene lead at
the contact site �0
 and Gw�1,1� is the Green’s function of
the semi-infinite wire at the site n=1.

From Eqs. �8� and �9� it is clear that all matrix elements of
the T matrix outside the 2�2 subspace vanish. Therefore the
Green’s function, Eq. �5�, within the chain can be expressed
in terms of the T matrix of the contact as

G�n,n�� = Gw�n,n�� + Gw�n,1�T�1,1�Gw�1,n�� . �11�

Here T�1,1�= �1�T̂�1
 is the �1,1� matrix element of the T
matrix and

Gw�n,n�� = �n��	+ − Ĥw�−1�n�


is the Green’s function of an isolated semi-infinite wire. We
use the tight-binding model to describe the electron Hamil-
tonian of the chain

Ĥw = �w�
n=1

�

�uw�n
�n� + �n
�n + 1� + �n + 1
�n�� , �12�

where �w is the nearest-neighbor hopping-matrix element in
the wire and the on-site energy uw�w describes the difference
in the work functions between graphene and the carbon chain
�in our notations the Fermi energy of the undoped graphene
sheet is set to zero�.

The Green’s function of the semi-infinite wire can be eas-
ily determined, see Appendix A

Gw�n,n�� =
1

2i�w sin k
�e−ik�n�−n� − e−ik�n+n��� . �13�

Here k is the magnitude of the electron quasimomentum,
which is related to the energy of the electrons by 	=uw�w
+2�w cos k. With the aid of Eqs. �8�–�10� we can readily
express T�1,1� in Eq. �11� in terms of the Green’s function
of the graphene lead, Gg�0 ,0�. This yields for the combined
Green’s function evaluated within the wire

G�n,n�� =
e−ik�n�−n�

2i�w sin k
�1 −

1 − �eikGg�0,0�
1 − �e−ikGg�0,0�

e−2ikn	 .

Here we introduced a combination of hopping integrals in
the junction and in the chain, �=�c

2 /�w. Comparing the last
expression with Eq. �4� we obtain the reflection amplitude of
the junction

r�	� = −
1 − �eikGg�0,0�
1 − �e−ikGg�0,0�

. �14�

Equation �14� is the main result of this subsection. It ex-
presses the reflection amplitude at the contact in terms of the
Green’s function of the lead at the contact point with the
wire, Gg�0 ,0�, and holds for an arbitrary lead.

B. Graphene leads with zigzag edges

We now specialize to the case, in which the graphene lead
is terminated at the zigzag edge. The zigzag edge has the
smallest number of broken bonds per unit length. It is there-
fore likely that the gap which appears in the graphene strip in
the experiments of Ref. 14 is formed along this edge.

We use the nearest-neighbor tight-binding model to de-
scribe the electron dynamics in graphene and denote the
electron � orbitals localized at the atomic sites by �A ,N
 �A
sublattice� and �B ,N
 �B sublattice�. Here N= �N1 ,N2� labels
the unit cell with a Bravais lattice vector N1a1+N2a2, see
Fig. 2. The site �A ,N=0
 is chosen at the atom which is
connected to the carbon chain.

In these notations Gg�0 ,0� in Eq. �14� can be expressed in
terms of the Green’s function of the semi-infinite graphene

plane, Ĝg= �	+− Ĥg�, as follows:

Gg�0,0� = �A,N = 0�Ĝg�A,N = 0
 . �15�

In order to evaluate the Green’s function of the semi-

infinite plane Ĝg we start with the infinite graphene plane and

add the perturbation V̂g, which nullifies the tunneling through
the bonds which separate the plane into two halves along the
zigzag edge, see Fig. 3.

The Green’s function of the infinite plane is diagonal in
the quasimomentum representation due to the translation
symmetry. We introduce the spinor Bloch functions as
�k

T�N�=exp�iK1N1+ iK2N2�
�A�k� ,�B�k��, where k is the
quasimomentum, K1=k ·a1 and K2=k ·a2 are the projections
of the quasimomentum onto a1 and a2, and �A/B are the
wave-function amplitudes on the A /B sublattices. In the qua-
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simomentum representation the �inverse� Green’s function of
an infinite graphene plane can be written as matrix in the
A /B sublattice space

G0,g
−1 �k� = − �g� − �+ 1 + eiK1 + e−iK2

1 + e−iK1 + eiK2 − �+
� . �16�

Here �g denotes the nearest-neighbor hopping-integral in
graphene and we introduced the dimensionless energy �+
�	+ /�g. The Dirac points at the corners of the hexagonal
Brillouin zone correspond to K1=K2= �2� /3. At these
points the off-diagonal matrix elements in the above equation
vanish. The Hamiltonian near these points reduces to the
familiar Dirac equation with the linear spectrum near the
Dirac points as shown in Fig. 1.

The perturbation V̂g that cuts the graphene plane into two
halves is given by �see Fig. 3�

V̂g = �g�N2,N2��ug�N1,N1���N1,0 0

0 �N1,1
�

− � 0 �N1,0�N1�,1

�N1,1�N1�,0 0
�	 . �17�

The second matrix in the brackets nullifies electron tunneling
between the two halves of the plane, and the first matrix
describes the on-site potential for the atoms along the zigzag
edge. This potential is parameterized in our model by the
dimensionless parameter ug, which is equal to the ratio of the
on-site potential to the hopping integral �g. Because of the
diminished number of neighbors for the edge atoms the on-
site potential is expected to be positive and have a magnitude
of the order of eV, i.e., of the same order as the hopping
integral, 0�ug�1.

Due to the symmetry of the problem with respect to trans-
lations along the edge, �N1 ,N2�→ �N1 ,N2+m� the corre-
sponding quasimomentum, K2, is conserved. Therefore be-

low we use a mixed position/quasimomentum representation,
�N1 ,K2�.

In this representation the matrix V̂g is independent of K2
and has nonzero matrix elements only in the 2�2 space
spanned by the states �A ,N1=0
 and �B ,N1=1
, which corre-
spond to the carbon atoms on the opposite sides of the divide
separating the plane into two halves. In this 2�2 subspace

V̂g is given by

Vg = �g� ug − 1

− 1 ug
� . �18�

In this representation the matrix V̂g is independent of K2
and has nonzero matrix elements only in the 2�2 space
spanned by the states �A ,N1=0
 and �B ,N1=1
, which corre-
spond to the carbon atoms on the opposite sides of the divide
separating the plane into two halves. In this 2�2 subspace

V̂g is given by

Vg = �g� ug − 1

− 1 ug
� . �19�

The reflection amplitude of the junction, Eq. �14�, de-
pends only on the Green’s function of the semi-infinite
graphene inside the same 2�2 subspace. In the mixed rep-
resentation the latter satisfies the equation

Gg�K2� = G0,g�K2� + G0,g�K2�VgGg�K2� , �20�

where the perturbation Vg is given by Eq. �18� and G0,g�K2�
is the unperturbed Green’s function inside the 2�2 subspace
�in the mixed representation�. The latter is evaluated in
Appendix B and is given by

G0,g�K2� =
1

�g
�ab

� � 1 − C + �2 + �ab

1 − C + �2 + �ab �
� ,

�21�

where we introduced the notations

C = 4 cos2K2

2
, a = �1 + ��2 − C, b = �1 − ��2 − C .

�22�

The branch of �ab in Eq. �21� is determined by analytic
continuation of � from the positive imaginary axis, where
�ab takes positive real values.

Using Eqs. �18�, �20�, and �21� we obtain

Gg�K2� =
2�ab + �1 − ug�a + �1 + ug�b
�g
�1 − ug�2a − �1 + ug�2b�

�1 0

0 1
� . �23�

The off-diagonal matrix elements in the above expression
vanish, as they should due to the absence of tunneling be-
tween the two half planes. The �1,1� matrix element deter-
mines the Green’s function at the zigzag edge for a given
quasimomentum K2 along the edge. Its imaginary part gives
the tunneling density of states into the edge for a given qua-
simomentum. It arises from two distinct contributions of the
edge and bulk states, which we discuss next.

(0,-1)

(0,0)

(0,1)

(0,-2)

(-1,0)

(-1,1)

(-1,-1)

(-1,-2)

A

B

FIG. 3. An infinite graphene plane is separated into two halves

by adding the perturbation V̂g, which nullifies the tunneling along
the dashed bonds.
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1. Tunneling density of states into the zigzag edge

The tunneling density of states at the zigzag edge of
graphene is described by the imaginary part of the diagonal
matrix elements in the Green’s function Eq. �23�. Physically,
the density of states at the edge contains the contributions
from the bulk and edge states. The contribution of the bulk
states is described by the imaginary part of �ab whereas the
contribution of the edge states corresponds to the pole at
�1−ug�2a− �1+ug�2b=0. This condition defines the spectrum
of the edge states

� =
1 + ug

2 − ��1 + ug
2�2 + 4ug

2�2 cos K2 + 1�
2ug

�24�

with cos K2�− 1
2 .

This spectrum is plotted in Fig. 1. The inequality cos K2

�− 1
2 reflects the fact that for ug�0, the edge states exist

only for ��0 as shown in the following text. For ��0, the
density of states for the edge states vanish, or the numerator
in Eq. �23� vanishes together with the denominator, eliminat-
ing the pole.

For weak on-site potential at the edge, ug
1, the edge-
state spectrum reduces to �=−ug�1+2 cos K2�, with cos K2

�− 1
2 . In this limit the spectrum and the wave functions of

the edge states can be understood quite easily. In the absence
of the on-site potential at the edge, ug=0, these states have
wave functions which reside only on the A sublattice and are
eigenfunctions of the quasimomentum k= �K1 ,K2�. It is easy
to see from Eq. �24� that these states form a degenerate band
of zero-energy states, in agreement with Ref. 19. From Eq.
�16� it follows that in order to obey the Schrödinger equation
in the interior of the lead the quasimomentum of such states
must satisfy the condition e−iK1 =−1−eiK2. Further, since the
wave function of these states vanishes on the B sublattice
they remain eigenstates of the Hamiltonian even after the
plane is separated into two halves. The normalizability con-
dition for the edge states is Im K1�0, implying �1+eiK2�
�1, which is equivalent to the inequality below Eq. �24�.
And the amplitude of the edge states decay with a factor of
2 cos�K2 /2�. For weak on-site potential at the edge, ug
1,
the edge-state spectrum may be obtained from the first
order in perturbation, ��K2�=ug��A�K2��2, where �A�K2�
is the wave function of the edge state at the edge
atoms. The normalization condition gives ��A�K2��2=1 /
�N1=−�

0 exp�2N1 Im K1�=−�1+2 cos K2�.
The above consideration illustrates that in the presence of

the on-site potential at the edge the band of edge states ac-
quires a finite width of order of the on-site potential. For
strong on-site potential at the edge-perturbation theory is no
longer applicable and the spectrum of the edge states is given
by Eq. �24�. At zero energy the spectrum of these states is
linear, which results in the finite density of states. It might
seem therefore that at small energies, �
1, the contribution
of the edge states to the tunneling density of states will be
much larger than that of the bulk states. This is not so how-
ever because at small energies near K2=2� /3 the wave func-
tions of edge states extend into the bulk over many lattice
spacings so that the local density of such states at the edge
vanishes linearly with energy. As a result, for ug�1 the con-

tribution of these states to the tunneling DoS at the edge
turns out to be of the same order as that of bulk states.

The real-space Green’s function Gg�0 ,0� at the contact
point is obtained by integrating the diagonal element of
Gg�K2��0 ,0� in Eq. �23� over K2: Gg�0 ,0�=�

dK2

2� Gg�K2�. We
write this integral as a contour integral over the unit circle of
the variable z2=exp�iK2�. Inside the contour the integrand
has a simple pole corresponding to the edge states and a
branch corresponding to the bulk states. We denote the con-
tribution of the pole and the branch cut by Gpole and Gbc
respectively,

Gg�0,0� =
1

�g
�Gpole + Gbc� . �25�

A lengthy but straightforward calculation gives

Gpole = − i
���
ug

�1 − ug
2�����

�3ug
2 − 2ug� − �2

, �26�

where ��	� is the step function indicating that the density of
states due to edge states is present only for ��0. The con-
tribution of the branch cut, Gbc, can be evaluated analytically
at low energies

Gbc = −
1

3ug
+

�

�ug

�1 + ug
2�

�3ug
2 − 2ug� − �2

�log
2���

�3�3ug
2 − 2ug� − �2� + 3ug − �

− ic
���
ug

, �27�

where c= 1
2� �1+ �

2 − 2�

3�3
��0.22. The imaginary parts of both

contributions �and with them the tunneling DoS at the edge�
vanish linearly with energy at small energy.

2. Reflection coefficient of the junction at low energies

Substituting the previous Eqs. �25�–�27� into Eq. �14� we
obtain a simple expression for the reflection coefficient of the
junction at low energies, ���
1,

�r�	��2 = 1 − �� �28�

with �=−2�4−uw
2 
�1−ug

2� /�3ug+c� / �ug+ 1
9ug

−
uw

3 �. In this
regime the electron-wave incident from the carbon chain into
the junction is almost perfectly reflected.

IV. DEVICE CONDUCTANCE AT LOW ENERGIES:
ASYMMETRIC RESONANCES

The strong reflection at the junction at low energies indi-
cates that the transmission coefficient of the whole device in
Eq. �2� also tends to vanish at small energies except in the
vicinity of resonances, cos�2Nk+2�0�=1. Substituting
�rr/l�	��= �r�	�� from Eq. �28� into Eq. �2� we obtain a simple
expression for the transmission coefficient of the device at
low energies
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T�	� = �1 +
�

	2 
1 − cos�2Nk + 2�0��	−1

. �29�

Here �0=2 arctan�� /3u� is the contact scattering phase shift
at zero energy and �=2 /�2, where � is a number of order
unity defined below Eq. �28�. Expanding the cosine near a
resonance energy 	=	0, we obtain a simple expression for
the transmission coefficient at small energies

T�	� = �1 + 
�1 −
	0

	
�2	−1

, �30�

where 
=N2� /2 is a dimensionless parameter. This repro-
duces the result �Eq. �3�� expected from qualitative consid-
erations in the case of symmetric coupling. The resonance
width is ��	0 /N. The resonance shape is strongly asym-
metric and markedly different from that of the Breit-Wigner
resonance, as shown in Fig. 4.

V. SUMMARY AND DISCUSSION

We studied electron transport through a single-atom car-
bon chain connected to graphene leads. The simplicity of the
hybridization pattern of electron orbitals in graphene and car-
bon chains enabled us to construct an analytically solvable
model and thereby gain physical insight into the essential
features of electron conduction in the system.

Transmission through the device is dominated by scatter-
ing at the contacts between the chain and the lead. For typi-
cal temperatures and doping levels in graphene the current-
carrying electron states have energies much smaller than the
band width. At these energies the contact between the chain
and the lead becomes almost perfectly reflecting. Its reflec-
tion amplitude can be expressed in terms of the Green’s
function, Gg�0 ,0�, of the lead at the atomic site connected to
the carbon chain, see Eq. �14�. In this equation the parameter
� describes the strength of coupling between the chain and
the lead. At low electron energies the phase factor eik may be

assumed energy independent, as it changes appreciably only
at energy scales on order of the band width in the wire. In
this regime the energy dependence of the transmission coef-
ficient is dominated by that of the density of states in the
lead. For graphene leads it becomes linear, see Eqs. �28� and
�1�.

For leads with zigzag edges both the bulk and edge states
contribute to the DoS at the contact point. Due to the differ-
ence in the on-site energy between the atoms at the edge and
in the interior of graphene the band of edge states acquires a
finite dispersion. The spectrum of this band is given by Eq.
�24� and is plotted in Fig. 1. Although the edge state spec-
trum is linear at small energies its contribution to the local
DoS at the edge is not constant but rather is linear in the
electron energy, �	��	�. This occurs because the edge-state
wave functions extend into the bulk to distances which are
inversely proportional 	, as explained in Sec. III B 1. As the
difference in the on-site potential between the atoms at the
edge and in the interior of the lead is of the same order as the
band width the contribution of edge states to the DoS is of
the same order as that of the bulk states. Therefore a substan-
tial part of the current through the carbon chain is propagated
into the lead by the edge states. The energy dependence of
the reflection coefficient of the junction is described by Eq.
�28�.

The interference between reflection amplitudes of the left
and right junctions gives rise to the transmission coefficient
of the device described by Eq. �29�. Due to the nearly perfect
reflection at the contact the energy dependence of the trans-
mission coefficient of the interconnect has resonant charac-
ter. Near the resonance the transmission coefficient is de-
scribed by a simple expression, Eq. �30�.

Our main conclusions, namely, the linear-energy depen-
dence of the transmission coefficient of the junction between
the chain and the lead, and the shape of the resonance in Eq.
�30� do not depend on many of the simplifying assumptions
of our model. The linear energy dependence of the junction-
transmission coefficient holds if the coupling between the
chain and the lead is energy independent. This assumption is
valid as long as the electron energy is smaller than the in-
verse propagation time across the contact and holds for more
complicated junctions, e.g., a small peninsular connecting
the chain to the lead. In this case Eqs. �14� and �29� will still
hold, provided � and � are replaced by the appropriate pa-
rameters describing the coupling strength between the chain
and the lead at low energies. Similarly, Eq. �30� will also
hold provided the resonance energy and the parameter 
 are
chosen appropriately. The generalization of the resonance
shape to the case of asymmetric contacts is given by Eq. �3�.

The resonant character of transmission will be preserved
even in the presence of the Coulomb interaction in the wire,
as long as wire is short enough so that the one-dimensional
correlation effects can be neglected. Such a wire will act as a
molecule with a single resonant level participating in trans-
port. For longer wires the one-dimensional correlations need
to be taken into account. In this respect the Umklapp pro-
cesses and the formation of Friedel oscillations near the con-
tact points are especially important. The study of these ef-
fects is left for future work.

0.0 0.2 0.4 0.6 0.8 1.0
�1.0

�0.5

0.0

0.5

1.0

K2�Π

Ε

FIG. 4. �Color online� The solid �black� curve represents the
intersection of the bulk state spectrum of graphene with the K1

=2� /3 plane that goes through the Dirac point. The dashed �red�
curve represents the spectrum of the edge states, which exist only
for 2� /3�K2��. The edge-state spectrum lies below the bulk
state spectrum.
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APPENDIX A: GREEN’S FUNCTION
OF A SEMI-INFINITE WIRE

We construct the Green’s function of the semi-infinite
wire from that of the infinite wire by adding a perturbation
that nullifies the hopping between the two halves. The re-
tarded Green’s function of the infinite wire in k space is
diagonal and given by

G0,w�k� = �	 − 	k + i0�−1 �A1�

with

	k = uw�w + 2�w cos k . �A2�

The real-space Green’s function is obtained by integrating
over k as

G0�n,n�� =
1

2�
� dkG0,w�k�eik�n−n�� �A3�

which gives

G0,w�n,n�� =
1

2i�w sin k
exp�− ik�n − n��� , �A4�

where k is the magnitude of the electron quasimomentum
related to the energy by 	=uw�w+2�w cos k.

The perturbation V̂w which cuts the wire to two halves has
nonvanishing matrix elements only in the 2�2 subspace
spanned by the orbitals with n=0 and n=1, where it is given
by

�Vw�0,0� Vw�0,1�
Vw�1,0� Vw�1,1�

� = − � 0 �w

�w 0
� . �A5�

The T matrix defined in Eq. �8� is also nonvanishing only in
the 2�2 subspace and can be expressed solely in terms of

the matrix elements of Ĝ0,w in the 2�2 space

�G0,w�0,0� G0,w�0,1�
G0,w�1,0� G0,w�1,1�

� =
1

2i�w sin k
� 1 e−ik

e−ik 1
� .

�A6�

Using Eqs. �A4�–�A6�, �7�, and �8� we obtain the Green’s
function of the semi-infinite wire, Eq. �13�.

APPENDIX B: DERIVATION OF EQ. (21)

In this Appendix we derive the expression for the unper-
turbed graphene Green’s function within the 2�2 subspace
spanned by the rows of atoms on the opposite sides of the
dashed links in Fig. 3. The unperturbed Green’s function in
the quasimomentum representation is obtained by inverting
the matrix in Eq. �16�

G0,g�k� = −
1

D
� − � 1 + eiK1 + e−iK2

1 + e−iK1 + eiK2 − �
� ,

where D=�g
�2− �1+e−iK1 +eiK2��1+eiK1 +e−iK2��.
In the mixed representation the Green’s function Ĝ0,g�K2�

in the 2�2 subspace of states �A ,N1=0
 and �B ,N1=1
, can
be obtained by the inverse Fourier transform of G0,g�k� with
respect to K1. An elementary calculation gives

�A,0�Ĝ0,g�K2��A,0
 = �B,1�Ĝ0,g�K2��B,1


=� dK1

2�

�

D

=
�

�g
�ab

, �B1�

and

�A,0�Ĝ0,g�K2��B,1
 = �B,1�Ĝ0,g�K2��A,0
� =

−� dK1

2�

1 + eiK1 + e−iK2

D
e−iK1

=
1

�g
�ab


1 − C + �2 + �ab� , �B2�

where a, b, and C are defined in Eq. �22�. Combining the
above matrix elements into one 2�2 matrix we arrive at
Eq. �21�.
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